RFEA SYSTEM APPLICATIONS LIST - [RF01]

SEMION SYSTEM - Retarding Field Energy Analyser

The Semion RFEA is in use worldwide for substrate-level measurements in many different types of plasma conditions. Below is a list of publications with their plasma sources, process gases, pressures and applications.

Plasma Source	Frequency	Gases	Pressure	Published Paper
Cascaded Arc	100 kHz	Ar/H ₂ /SiH ₄	100 mTorr	Hydrogenated amorphous silicon deposited under accurately controlled ion bombardment using pulse-shaped substrate biasing
Cascading Arc	195 kHz	Ar/H ₂	130 mTorr	Accurate control of ion bombardment in remote plasmas using pulse-shaped biasing
Cathodic Arc Thruster	30 Hz DC	Titanium	0.15 mTorr	Life Time Characterization of the Inline-Screw-Feeding Vacuum-Arc-Thruster
Cathodic Arc Thruster	30 Hz DC	Titanium	0.15 mTorr	Experimental Characterization of the Inline-Screw-Feeding Vacuum-Arc-Thruster Operation
ССР	13.56 MHz and 250kHz Pulsed-DC	CH ₄	7 to 70 mTorr	lon energy distributions in bipolar pulsed-dc discharges of methane measured at the biased cathode
ССР	15 MHz, 30 MHz and 60 MHz	$Ar + CF_4 + O_2$	5 to 40 mTorr	Control of ion energy distributions using phase shifting in multi-frequency capacitively coupled plasmas
ССР	13.56 MHz	Ar	20 mTorr	A spatially resolved retarding field energy analyzer design suitable for uniformity analysis across the surface of a semiconductor wafer
ССР	13.56 MHz 27.12 MHz	Ar	30 mTorr	The electrical asymmetry effect in geometrically asymmetric capacitive radio frequency plasmas
ССР	13.56 MHz 27.12 MHz	Ar	20 mTorr	Ion Energy Distribution Skew Control Using Phase-Locked Harmonic RF Bias Drive
ССР	400 kHz 100 MHz	Ar	20 mTorr	Monitoring Ion Energy Distribution in Capacitively Coupled Plasmas Using Non-invasive Radio-Frequency Voltage Measurements
ССР	13.56 MHz	CO ₂ /C ₂ H ₄	75 mTorr	Deposition of Functional Plasma Polymers Influenced by Reactor Geometry in Capacitively Coupled Discharges
ССР	13.56 MHz	H ₂	200 to 300 mTorr	Direct ion flux measurements at high-pressure-depletion conditions for microcrystalline silicon deposition
ССР	13.56 MHz	H ₂	10 mTorr	Nouvelle technologie utilisant les plasmas H2 et He pour contrôler la gravure de couches ultraminces à l'échelle nanométrique
ССР	13.56 MHz 27.12 MHz	Ar/N ₂	4 mTorr	Ion energy control via the electrical asymmetry effect to tune coating properties in reactive radio frequency sputtering
ССР	30 MHz to 60 MHz	He/Ne	37 to 150 mTorr	UWAVS first mirror plasma cleaning technology using 30–60 MHz RF discharges
ССР	13.56 MHz	CO ₂ /C ₂ H ₄	75 mTorr	Stable, nanometer-thick oxygen-containing plasma polymer films suited for enhanced biosensing

ССР	13.56 MHz	NH ₃	50 mTorr	Amino functionalization of carbon nanotube surfaces with NH3 plasma treatment
CCP Magnetron Sputtering	13.56 MHz 350kHz Pulsed-DC	Ar, Titanium	2 mTorr	Ion energy distribution measurements in rf and pulsed dc plasma discharges
CCP (200 mm TEL DRM)	13.56 MHz 60 MHz	Ar/O ₂ /CF ₄	5 to 40 mTorr	High Voltage RFEA Design, Optimization, and Operation in the Cathode of a Dual Frequency Capacitively Coupled Plasma
CCP (GEC Reference Cell)	13.56 MHz 27.12 MHz 40.68 MHz	Ar	40 mTorr	Power supply and impedance matching to drive technological radio-frequency plasmas with customized voltage waveforms
CCP (GEC Reference Cell)	13.56 MHz 27.12 MHz 40.48 MHz	Ar/Ne	20 mTorr	Experimental investigations of electron heating dynamics and ion energy distributions in capacitive discharges driven by customized voltage waveforms
CCP (GEC Reference Cell)	13.56 MHz 27.12 MHz 40.48 MHz	Ar	40 mTorr	A Simple Model for Ion Flux Energy Distribution Functions in Capacitively Coupled Radio Frequency Plasmas Driven by Arbitrary Voltage Waveforms
CCP (GEC Reference Cell)	13.56 MHz 67.8 MHz	Ar	26 mTorr	Plasma Sources Science and Technology Dual frequency capacitive plasmas in Fe and Ni sputter applications: correlation of discharge properties on thin film
CCP and ICP	13.56 MHz	0 ₂ /Ar	20 mTorr	Generation of carbon nanowhiskers, nanotips, and nanodots by controlling plasma environment: lon energy and radical effects
CCP for PECVD	13.56 MHz	C ₂ H ₄ /CO ₂	75 mTorr	Studium mechanism plazmové polymerace
CCP for PECVD	13.56 MHz	H ₂ , SiH ₄	450 mTorr	Plasma–surface interaction during low pressure microcrystalline silicon thin film growth
ECR lon Gun	Microwave	Ar	0.4 mTorr	Particle beam experiments for the investigation of plasma- surface interactions: application to magnetron sputtering and polymer treatment
ECWR -HiPIMS	13.56 MHz and 100 Hz Pulsed-DC	Ar, Titanium	0.1 to 10 mTorr	Plasma diagnostics of low pressure high power impulse magnetron sputtering assisted by electron cyclotron wave resonance plasma
ECWR -HiPIMS	13.56 MHz and 100 Hz Pulsed-DC	Ar/O ₂	0.6 to 70 mTorr	Deposition of rutile (TiO2) with preferred orientation by assisted high power impulse magnetron sputtering
EUV	500 Hz	Xe	0.75 to 75 mTorr	Ion fluxes towards surfaces exposed to EUV-induced plasmas
Hall Thruster	DC	Xe	0.2 mTorr	Experimental characterization of the narrow channel Hall thruster
Helicon	500 kHz 1 MHz	Ar/He	10 mTorr	Tailored ion energy distributions at an rf-biased plasma electrode
Helicon Thruster	13.56 MHz and 27.12 MHz	Ar	15 mTorr	Ion ejection from a permanent-magnet mini-helicon thruster
Helicon Thruster	27.12 MHz	Ar	5 mTorr	A Compact Permanent-Magnet Helicon Thruster
HiPIMS	94 kHz + 100 Hz Pulsed DC	Ar, Titanium, Copper	2 to 20 mTorr	Ionized vapor deposition of antimicrobial Ti–Cu films with controlled copper release
HiPIMS	100 Hz to 500 Hz Pulsed-DC	Ar/N ₂	4 to 15 mTorr	Entwicklung und Anwendung von kombinatorischen Methoden und Mikrosensoren zur Messung mechanischer Schichtspannungen und der Schichttemperatur bei reaktiven
HiPIMS	100 Hz Pulsed-DC	Ar	3 to 7 mTorr	A modified Katsumata probe—Ion sensitive probe for measurement in non-magnetized plasmas
HiPIMS	100 Hz, 200 Hz, 400 Hz Pulsed-DC	Al, Cr, Ar, N ₂	4 to 15 mTorr	Effects of the Ion to Growth Flux Ratio on the Constitution and Mechanical Properties of Cr1–x-Alx-N Thin Films
HiPIMS	100 Hz	Ar, Cu	22 mTorr	Growth and properties of Ti-Cu films with respect to plasma parameters in dual-magnetron sputtering discharges
HiPIMS	13.56 MHz 27.12 MHz 60 MHz	Ar	37 mTorr	Effect of Frequency and Power of Bias Applied to Substrate on Plasma Property of Very-High-Frequency Magnetron Sputtering

Hipims	40.68 MHz	Ar	37 mTorr	Growth and structural properties of silicon on Ag films prepared by 40.68 MHz very-high-frequency magnetron sputtering
HiPIMS	2 MHz 13.56 MHz	Ar	37 mTorr	Control of growth and structure of Ag films by the driving frequency of magnetron sputtering
HiPIMS	13.56 MHz 27.12 MHz	Ar	37 mTorr	Initial growth and microstructure feature of Ag films prepared by very-high-frequency magnetron sputtering
HiPIMS	2 MHz 13.56 MHz	Ar	37 mTorr	Structural properties and preparation of Si-rich thin films by radio-frequency magnetron sputtering
HiPIMS	13.56 MHz 27.12 MHz 60 MHz	Ar	37 mTorr	Effect of Driving Frequency on Growth and Structure of Silicon Films Deposited by Radio-Frequency and Very-High-Frequency Magnetron Sputtering
HiPIMS	13.56 MHz 60 MHz	Ar	37 mTorr	Preparation and structural properties of thin carbon films by very-high-frequency magnetron sputtering
HiPIMS	40.68 MHz 60 MHz	Ar	37 mTorr	Effect of driving frequency on the structure of silicon grown on Ag (111) films by very-high-frequency magnetron sputtering
HiPIMS + DC Magnetron Sputtering	500 Hz Pulsed-DC	Ar/N ₂	3 mTorr	Space-resolved plasma diagnostics in a hybrid (Cr,Al)N process
HiPIMS + MF	350 kHz Pulsed-DC	Ar + O_2 + N_2 , Ti O_2 target	10 mTorr	Investigation of reactive HiPIMS + MF sputtering of TiO_2 crystalline thin films
HiPIMS + MF	94 kHz + 100 Hz Pulsed DC	Ar, Titanium, Copper	2 to 20 mTorr	Effect of mid-frequency discharge assistance on dual-high power impulse magnetron sputtering
HiPIMS and DC Cathode	500 Hz Pulsed-DC	Ar/Kr	4 mTorr	Analysis of ion energy distribution at the substrate during a HiPiMS (Cr,Al)N process using retarding field energy analyzer and energy resolved mass spectrometer
HiPIMS and DC Cathode	500 Hz Pulsed-DC	Ar/Kr/N ₂	4 mTorr	Influence of HiPIMS pulse parameters on the reactive gas $\rm N_2$ and on the properties of (Cr, Al)N coatings
HiPIMS and DC Magnetron Sputtering	500 Hz to 1000 Hz Pulsed-DC	Ar	4 mTorr	Influence of dcMS and HiPIMS in a dcMS/HiPIMS hybrid process on plasma and coating properties
ICP	13.56 MHz Pulsed RF	He, Ar, Cl ₂ /SiCl ₄	10 mTorr	lon flux and ion distribution function measurements in synchronously pulsed inductively coupled plasmas
ICP	13.56 MHz	Ar	20 mTorr	Experimental Study of SiO2 Sputter Etching Process in 13.56 MHz rf-Biased Inductively Coupled Plasma
ICP	3.39 MHz 13.56 MHz 27.12 MHz	Ar + O ₂	10 to 30 mTorr	lon energy and angular distributions in planar Ar/O ₂ inductively coupled plasmas: hybrid simulation and experimental validation
ICP	13.56 MHz	Ar	20 mTorr	Surface structurization and control of CuS particle size by discharge mode of inductively coupled plasma and vapor-phase sulfurization
ICP	13.56 MHz	H ₂	10 mTorr	Validation of an atomic hydrogen etching sensor for plasma diagnostics
ICP	13.56 MHz	Cl ₂	10 mTorr	Study of a Radical Doping Method for Large-area Two- dimensional Materials
ICP	13.56 MHz CW/Pulsed	Ar/O ₂	75 mTorr	Plasma dynamics at the surface interface in radio frequency discharges
ICP	13.56 MHz	He, Ar, O ₂	2 to 10 mTorr	Generation and Characterization of Energetic Neutral Beams for Surface Modification
ICP	13.56 MHz Pulsed	SF ₆ /C ₄ F ₈ /Ar	7 mTorr	Etch Characteristics of Si and TiO2Nanostructures Using Pulse Biased Inductively Coupled Plasmas
ICP	13.56 MHz	Ar	7 to 40 mTorr	Enhanced metastable population through evaporation cooling and recombination in the argon afterglow
ICP	13.56 MHz	Ar, HBr	10 mTorr	Ion Energy Distribution Functions and Ion Flux in pulsed ICP plasmas
ICP	13.56 MHz Pulsed	Ar	7 mTorr	Recombination and enhanced metastable repopulation in the argon afterglow
ICP	13.56 MHz	Ar, Xe, Cl ₂	5 to 20 mTorr	Towards a nanometric precision etching in reactive plasmas: molecular dynamics simulations of Si-CI interactions

ICP (300 mm AMAT AdvantEdge)	13.56 MHz, CW and Pulsed	Cl ₂	20 mTorr	Roughness generation during Si etching in Cl ₂ pulsed plasma
ICP (300 mm AMAT AdvantEdge)	13.56 MHz	Не	10 mTorr	Helium plasma modification of Si and Si ₃ N ₄ thin films for advanced etch processes
ICP (300 mm AMAT AdvantEdge)	13.56 MHz, CW and Pulsed	HBr/O ₂	10 mTorr	Silicon etching in a pulsed HBr/O $_2$ plasma. I. Ion flux and energy analysis
ICP (300 mm AMAT AdvantEdge)	13.56 MHz	Cl ₂	20 mTorr	Etching mechanisms of thin SiO_2 exposed to Cl_2 plasma
ICP (300 mm AMAT AdvantEdge)	13.56 MHz	HBr/ O ₂	20 mTorr	Développement de procédés de gravure à base de plasmas réactifs pulsés Pulsed plasmas for etch applications
ICP (300 mm SEMES RIE)	13.56 MHz	HBr/O ₂	5 mTorr	Characteristics of reactive ion etching lag in HBr/O ₂ plasma etching of silicon trench for nanoscale device
ICP (AMAT Centura 300 DPS)	13.56 MHz	Ar/H ₂ /N ₂	20 to 40 mTorr	Development of innovating plasma etching processes for sub 14nm nodes by coupling conventional lithography with auto aligned approach based on block copolymer
ICP (Plasmalab 100 etcher)	13.56 MHz	CHF ₃ /Ar	10 to 40 mTorr	Balancing ion parameters and fluorocarbon chemical reactants for SiO_2 pattern transfer control using fluorocarbon-based atomic layer etching
ICP (Plasmalab 100 Etcher)	13.56 MHz	CF ₃ + Ar	5 to 40 mTorr	Balancing ion parameters and fluorocarbon chemical reactants for SiO ₂ pattern transfer control using fluorocarbon-based atomic layer etching
ICP (Plasmalab 100 etcher)	13.56 MHz	Ar	10 mTorr	Atomic layer etching of SiO_2 with Ar and CHF_3 plasmas: A self- limiting process for aspect ratio independent etching
ICP (PlasmaLab 80)	13.56 MHz CW and Pulsed	SF ₆	7.5 to 30 mTorr	Extraction and neutralization of positive and negative ions from a pulsed electronegative inductively coupled plasma
ICP (SEMES Michelan)	13.56 MHz	Ar	10 to 100 mTorr	A Study on customized plasma dry etching suited to various application processes
ICP Array	13.56 MHz	Ar/Ne	7 mTorr	Inductively coupled array (INCA) discharge
ICP for ALD	13.56 MHz	02	7.5 mTorr	Substrate-biasing during plasma-assisted atomic layer deposition to tailor metal-oxide thin film growth
ICP for ALD	13.56 MHz	H ₂ /O ₂ , Ar, N ₂	7.5 to 30 mTorr	Functional analysis of retarding field energy analyzers for ion energy distribution measurements in plasma enhanced atomic layer deposition
ICP for ALD (Oxford Instruments FlexAI)	13.56 MHz	0 ₂	4 to 22 mTorr	The Influence of Ions and Photons during Plasma-Assisted ALD of Metal Oxides
ICP for ALE (PlasmaPro 100 ALE)	-	Ar/Cl ₂	-	A route towards the fabrication of 2D heterostructures using atomic layer etching combined with selective conversion
ICP for Magnetron Sputtering	13.56 MHz 27.12 MHz 60 MHz	Ar	40 mTorr	Plasma property of inductively coupled discharge and substrate bias co-assisted very-high-frequency magnetron sputtering
ICP for Magnetron Sputtering	13.56 MHz 27.12 MHz 60 MHz	Ar	40 mTorr	Effect of driving frequency on plasma property in radio frequency and very high frequency magnetron sputtering discharges
ICP Ion Beam	13.56 MHz	Ar	0.5 to 50 mTorr	Retarding field energy analyser ion current calibration and transmission
ICP Magnetron Sputtering	13.56 MHz 60 MHz	Ar	7 to 37 mTorr	lon property and electrical characteristics of 60 MHz very-high- frequency magnetron discharge at low pressure
ICP Thruster	4 MHz + DC	Ar	1 mTorr	Hysteresis effects in the formation of a neutralizing beam plasma at low ion energy
ICP Thruster	13.56 MHz	Ar, SF ₆	1 to 12 mTorr	Response of an ion-ion plasma to dc biased electrodes
ICP Thruster	13.56 MHz	Ar, SF ₆	1 to 12 mTorr	Extraction and Acceleration of Ions from an Ion Plasma
ICP for ALD (Oxford Instruments FlexAl)	13.56 MHz	Ar/H ₂ , H ₂	6-30 mTorr	Plasma-Assisted ALD of Highly Conductive HfNx: On the Effect of energetic lons on Film Microstructure

ССР	45, 51, 54, 57 and 60 MHz	H ₂	37.5 mTorr	ITER visible spectroscopy reference system first mirror plasma cleaning in radio-frequency gas discharge - circuit design and plasma effects
ССР	13.56 MHz	Ar, Ar/O2	7.5 mTorr	The Magnetic asymmetry effect in geometrically asymmetric capacitively coupled raio frequency discharges operated in Ar/ O ₂
ССР	13.56 MHz	Ar	1 Pa	Experimental and numerical characterisation of a radio frequency plasma source with a DC grounded electrode using a quarter wavelength filter
CCP RIE (Nanomaster NRE 3500)	13.56 MHz	Ar/O ₂ /SF ₆	30 to 300 mTorr	Excitation of Ar, O_2 , and SF_6/O_2 plasma discharges using tailored voltage waveforms: control of surface ion bombardment energy and determination of the dominant
ICP	13.56MHz Pulsed	Ar	20 mTorr	Factors influenching ion energy distributions in pulsed inductively coupled argon plasmas
ICP	13.56MHz	C ₅ F ₈ ,C ₅ F ₈ /Ar	5-15 mTorr	Study on plasma characteristics and gas analysis before and after recovery using liquid-fluorocarbon precursor
ICP Thruster		Xenon, Iodine	< 0.01 mTorr	Ion beam diagnostic for the assessment of miniaturized electric propulsion systems
Ion Beam	DC	Ar/O ₂	1.6 mTorr	Ar and O ₂ linear ion beam PET treatments using an anode layer ion source
Ion Beam (Boxer Pro)	DC	O ₂	0.3 mTorr	Distribution of ion current density on a rotating spherical cap substrate during ion-assisted deposition
Ion Beam (DC Plasma)	DC	Kr	7.5 to 75 mTorr	Unbalanced Cylindrical Magnetron for Accelerating Cavities Coating
Ion Beam (Multiple Sources)	Grounded	Ar, O, N, N ₂ , O ₂ , H ₂ , CHxPolymers	0.1 mTorr	Particle beam experiments for the analysis of reactive sputtering processes in metals and polymer surfaces
Hall Thruster	DC	Xe	2 sccm	Far-Field Plume Characterisation of a 100-W Class Hall Thruster
Magnetron Sputtering	2 MHz 13.56 MHz	Ar	7 to 40 mTorr	Effect of radio-frequency substrate bias on ion properties and sputtering behavior of 2 MHz magnetron sputtering
Magnetron Sputtering	DC	Ar, N ₂	4 mTorr	Influence of the magnetic field configuration on the reactive sputter deposition of TiN
Magnetron Sputtering	Pulsed-DC	Ar/O ₂ /CF ₄ Sn Sputter	4 mTorr	Transparent Conductive Oxides by Magnetron Sputtering for Solar Energy Applications
Magnetron Sputtering (Remote)	DC	Ar/N ₂	1 mTorr	TiN Deposition and Process Diagnostics using Remote Plasma Sputtering
Plasma Jet	13.56 MHz	Ar/O ₂ , N ₂	26 mTorr	The low temperature plasma jet sputtering systems applied for the deposition of thin films
RPS	60 MHz	Ar, H ₂ , N ₂	300 mTorr	Downstream Plasma Delivery From a Remote VHF Source

*When making an order, please alert us if you will be using CO gas (Carbon Monoxide), since this gas requires non-standard grids in the RFEA probe.

*Click here to read more about Semion RFEA System.

*Click to download the <u>Semion RFEA System</u> brochure and <u>Semion Pulsed DC System</u> brochure.

*Click <u>here</u> to download the Semion RFEA System technical presentation.

QUANTUM SYSTEM - Retarding Field Energy Analyser

The Quantum system is comprised of a RFEA with integrated quartz crystal microbalance (QCM), used to measure the ion energy distribution (IED) and the ion-neutral deposition ratio at a surface inside a plasma reactor. Below is a list of publications with their plasma sources, process gases, pressures and applications.

Plasma Source	Frequency	Gases	Pressure	Published Paper
ICP (Ox. Insts. FlexAL ALD)	13.56 MHz	Ar/O ₂ , SiH ₄ /NO ₂ , SiO ₂ Films	50 mTorr	Evidence for low-energy ions influencing plasma-assisted atomic layer deposition of SiO ₂ : Impact on the growth per cycle and wet etch rate
HiPIMS		Ar, Cr-Al-C films	4 mTorr	Effects of HiPIMS discharges and annealing on Cr-Al-C thin films
Magnetron Sputtering	150 kHz pulsed-DC	Ar, Cu Sputtering	3 to 5 mTorr	Measurement of deposition rate and ion energy distribution in a pulsed dc magnetron sputtering system using a retarding field analyzer with embedded quartz crystal microbalance

*Click here to read more about Quantum RFEA System.

*Click here to download the brochure.

Impedans Ltd

Chase House

City Junction Business Park, Northern Cross

Dublin - D17 AK63, Ireland

Tel: +353 1 842 8826 Email: sales@impedans.com www.impedans.com